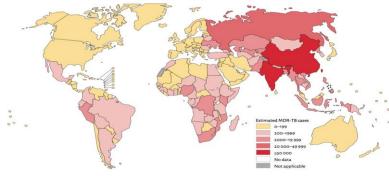
Transmission of Multidrug Resistance Tuberculosis in China

Qian Gao

School of Basic Medical Sciences, Fudan University

qiangao@fudan.edu.cn

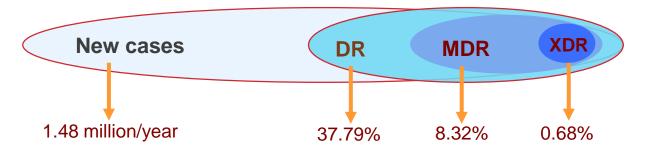
2018.09.13, Suzhou


Outline

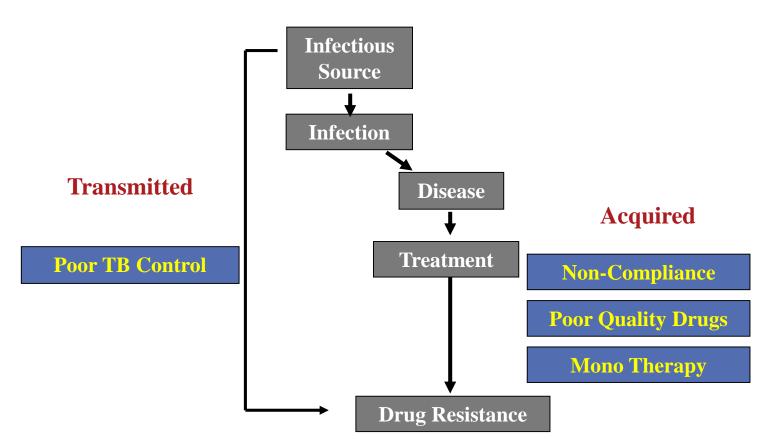
•Transmission of MDR Tuberculosis

- MDR-TB in new cases
- Resistance in treated cases
- Recent transmission of MDR-TB

MDR-TB around the World & China



Globally in 2014, an estimated 480
000 cases & 190 000 people died of MDR-TB.


DR-TB: resistant to any first line anti-TB drug MDR-TB: resistant to at least INH & RIF XDR-TB: MDR+ FQs /any injectable drug

Global Tuberculosis report 2015, WHO

2007-2008 China National Survey

How DR Developed

Modified from Dr. Rob Warren

About 60% of MDR-TB were New Cases

MDR Rate = MDR in New	cases / Total of New cases
------------------------------	----------------------------

	% of new cases	95%CI	% of re- treated cases	95%CI
China	5.7	4.5-7.0	26	22-30
India	2.2	1.9-2.6	15	11-19
Indonesia	1.9	1.4-2.5	12	8.1-17
South Africa	1.8	1.4-2.3	6.7	5.4-8.2
HIGH BURDEN	3.8	2.2-5.4	22	13-31
	<i>C</i> 1 1	177 1 1 .		

Global Tuberculosis report 2015, WHO

Proportion = MDR in New Cases / Total of MDR

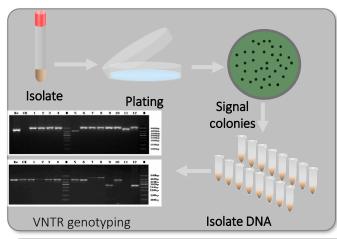
Cattin ag		No. of	DR		MDR	
Settings		cases	No.	%	No.	%
Shanghai	New	7035	1016	(14.4)	199	(2.8)
	Re-treated	1380	385	(27.9)	134	(9.7)
	Rate of		1016/	(72 , 5)	199/	(59.8)
	new case	-	1401	(72.5)	333	
National (Five fields)	New	1867	352	(18.8)	74	(4.0)
	Re-treated	239	101	(42.3)	51	(21.3)
	Rate of		352/		74/	(59.2)
	new case	-	453	(77.7)	125	(59.2)

- More than 70% of DR were new cases
- About 60% MDR/XDR-TB were new cases, caused by transmission

Shen X, et al. Int J Tuberc Lung Dis, 2009, Zhao M., et al., Plos ONE. 2009, Yang C, et al., Clin Infect Dis., 2015

About 60% Treated DR-TB were Transmitted

Dogma: Treated patients were acquired DR acquired resistance sentitive strain primary resistance resistant strain multiple infection

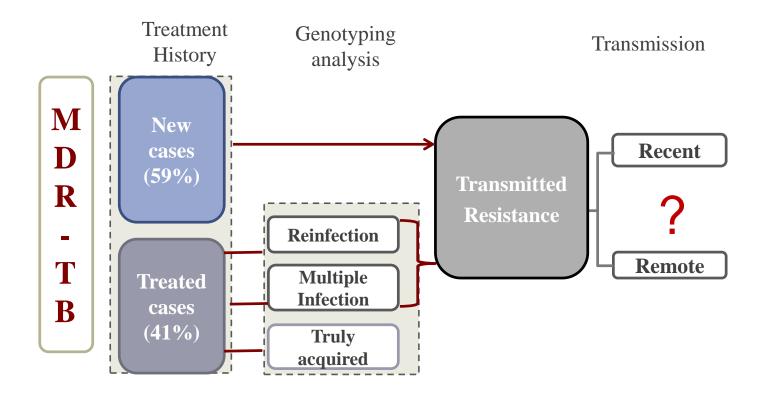

Resistance increased: 81 casesdifferent
genotypes:
48 cases (59%)identical
genotypes:
33 cases (41%)

• Patients during treatment or retreatment, 59% of the increased resistance is due to transmitted

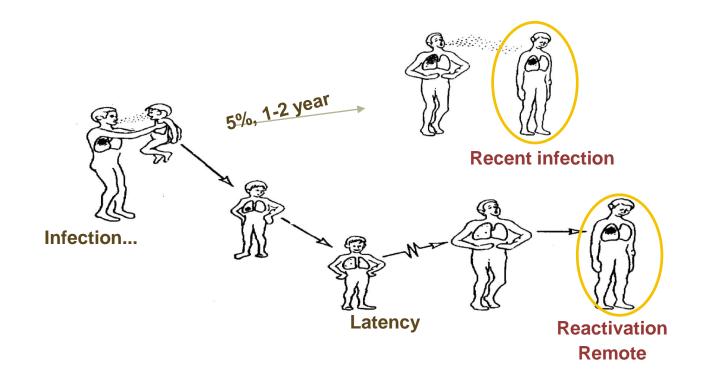
84% (27/32) is transmitted resistance Li X., et al. *Journal of Infect Dis*, 2007

Nsofor C., et al., Sci Rep, 2017

Multiple Infections among Patients

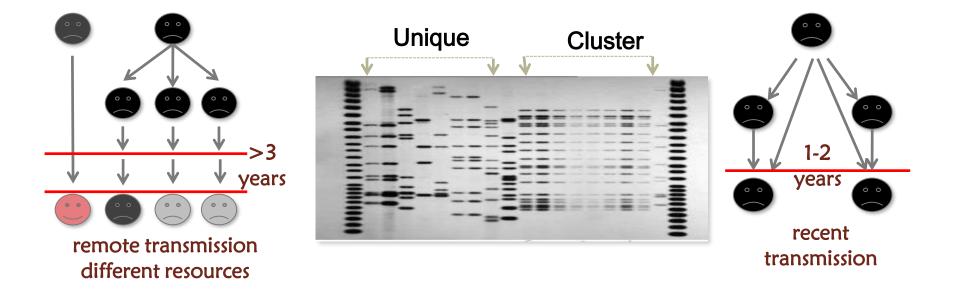


- Among TB patients in Shanghai, the estimated rate of mixed infections was 5.6%.
- Mixed infections were detected in 11.2% of TB cases in Heilongjiang.


Case collection time	isolates	DST		VNTR genotypes								
		INH	RFP	Miru31	Etr-F	Mtub04	Miru39	Mtub21	Miru26	Qub26	Qub11a	
	11/12/09	66-1	S	S	5	2	4	3	5	7	8	5
2-2	11/12/09	66-2	R	S	5/3	2/1	4/2	3/2	5	7	8	5
2 11	10/12/09	58-1	S	S	5	1	4	3	5	6	9	5
2-11	10/12/09	58-2	R	S	5	2	4	3	7	7	8	8

Fang R, et al., Tuberculosis, 2008, Peng Y, et al. Tuberculosis, 2013

Time of Transmission: Recent or Remote?



Time of Transmission: Recent or Remote?

How to Differentiate Recent Transmission?

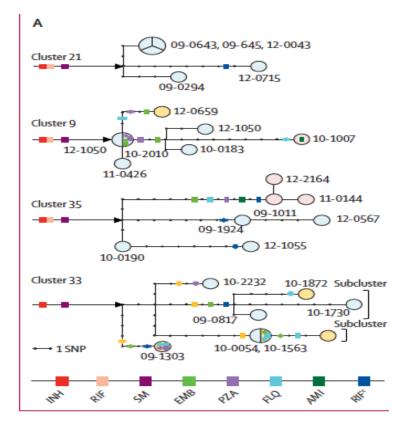
- Molecular Epidemiology assumption
 - Identical genotype (Cluster strains) recent transmission
 - Unique genotype remote transmission & reactivation
 - Genotyping: IS6110-RFLP, VNTR, Whole Genome Sequence

Population-based Molecular Epidemiology

- From 2009 to 2012, still ongoing
- Selection of five field sites
- Covering ~5.8 million inhabitants
- Including all culture-positive TB

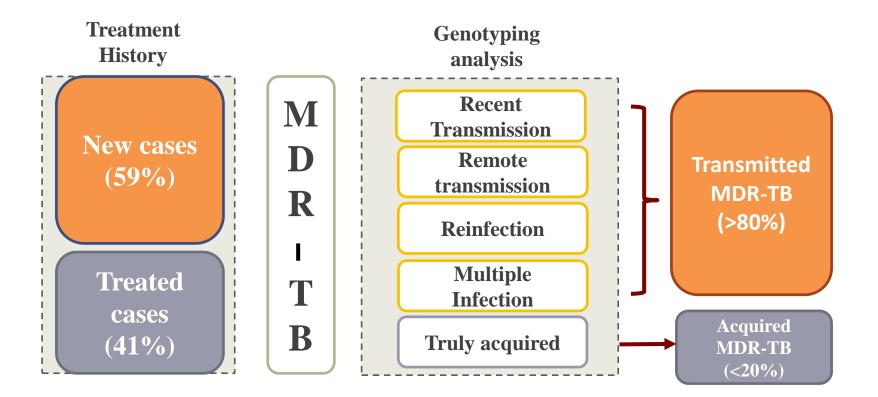
Fields	Areas(km²)	Population	Prevalence of TB (/100,000)
Heilongjiang	3,756	520,000	512
Henan	1,307	868,000	497
Shanghai	604	1,634,000	96
Sichuan	966	838,000	544
Guangxi	2,473	456,500	477

Population-based Molecular Epidemiology

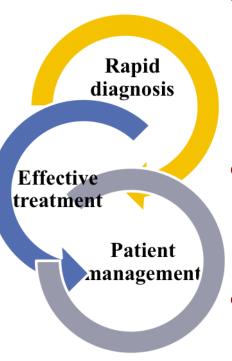

Fields	No. of isolates	No. of clustered	cluster rate (%)	average cluster size
Wusheng, SC	414	90	21.7	2.1
Pingguo, GX	324	117	36.1	2.6
Weishi, HN	481	149	30.9	2.6
Songjiang, SH	797	255	32.0	2.5
Wuchang, HLJ	258	94	36.0	3.0
Total	2274	705	31.0	2.5

- 2009 to 2012, all culture-positive TB were enrolled in five fields across China
- **41%** MDR-TB were clustered and indicates recent transmission
- MDR-TB were more likely to be clustered than susceptible cases (**41% vs 31%**), suggesting a risk factor of recent transmission, aOR=1.86 (95% CI 1.25-2.63)

Yang C, et al. Clin Infect Dis 2015


Genomic Cluster Analysis in Shanghai

- 2009-2012, 4.6% (367/7978) were MDR cases 60% were new cases
 - **38.6%** (125/324) were VNTR-clustered
- Risk factor for recent transmission
 - diagnosis delay ($\geq 2ms$): aOR=2.3 (1.2-4.1)
 - elderly (≥ 65 ys): aOR=3.2 (1.4-7.4)
- MDR-TB in 91.9% (34/37) clusters were transmitted
- 86.8% (33/38) clustered cases accumulated additional resistance mutations, developed to pre-XDR & XDR cases



Yang C, et al. The Lancet Infect Dis 2017

Most MDR-TB were Caused by Transmission

Tremendous Challenges

• Case Detection: lacking human & financial resource

- less than 15% were diagnosed and treated
- Backward technology, diagnosis delay (2~3 months)
- > 80% of the county TB lab did not perform culture

• MDR Treatment: lacking drugs & financial support

- Insufficient treatment (not based on DST regimen)
- Low success rate (<40%)
- Transmission Control: NO any laws or regulations
 - Almost no infection control
 - No restriction on MDR-TB patients

Take Home Messages

• MDR-TB transmission is serious in China

- About 60% of MDR-TB were new cases
- About 60% of DR in retreated cases caused by transmission
- At least 1/3 of MDR-TB cases were due to recent transmission
- Totally, more then 80% of MDR-TB cases were due to transmission
- Timely DST is urgently needed for all bacteria positive patients!

Acknowledgements

- Fudan University
- Research Fields CDC
- University of California, Davis
- Funding:
 - National Science and Technology Major Project of China
 - National Science Foundation of China

