A case-control study of household air pollution and tuberculosis in women and young children in urban India

Jessica Elf, PhD MPH

Postdoctoral Fellow Johns Hopkins School of Medicine Schroeder Institute at Truth Initiative

Background

- 9.6 million incident cases, 1.5 million deaths
 - 88% of new cases and 73% of TB deaths were in HIV-*uninfected*

Disease of Poverty

- Most prevalent among those in poor social and economic conditions
- Social determinants increasing risk for infection → disease
 - ✓ Undernutrition
 - ✓ Tobacco Smoking
 - ✓ Crowding
 - ✓ Alcohol Abuse
 - ?? Household Air Pollution

Household Air Pollution (HAP)

- Complex mix of by-products from household-based combustion
 - Some major contributors: Cooking/heating fuel, SHS, mosquito coils
- Associated with other respiratory diseases: ALRI, COPD, asthma, lung cancer
 - \rightarrow Not definitively associated with TB
 - Meta-analysis: OR 1.6 (95% CI: 0.7-3.6) when restricted to females
 - Lakshmi 2012 (India): 3.14 (95% CI: 1.15 8.56)
 - Pohkrel 2010 (Nepal): OR 1.21 (95% CI: 0.48 3.05)
 - Kerosene Stove: OR 3.36 (95% CI: 1.01-11.22)

Study Location

India

- 2.2 million incident cases (23% of global burden)
- 220,000 deaths
- TB epidemic not driven by HIV
- 64% of Indian households use biomass fuels (Rural: 81%; Urban: 26%)

Pune District

- Large district located in state of Maharastra
- 5.7 million urban, 3.7 million rural
- Annual TB Incidence: 185/100,000
- Byramjee Jeejeebhoy Medical College and Sassoon General Hospital (BJMC/SGH) – large tertiary public hospital

Methods

Matched case-control study

- Cases

<u>Inclusion</u>: <5 years of age or adult women presenting at BJMC/SGH and diagnosed with TB

Exclusion: HIV infection, diabetes

- Controls

<u>Inclusion</u>: Randomly selected from same neighborhood, age (± 12 months for children, ± 5 years for adults) and sex matched <u>Exclusion</u>: HIV infection, diabetes, positive for TB symptom screen

Statistical Methods

- Conditional logistic regression for matched data
 - Outcome \rightarrow TB
 - 1° Exposure \rightarrow Log-transformed 24-hour PM_{2.5}
- Predictor variables of interest: p < 0.20 in univariate analysis or a priori

Exposure Assessment

Questionnaires and Reported Measures

- Socio-demographic
- Fuel use patterns
- Secondhand tobacco smoke

Environmental Exposure Assessment: PM_{2.5}

- 24-hour PM_{2.5} (PM < 2.5 microns diameter)
 - Important product of combustion
 - Highly regulated and monitored
- 1 x 1 meter away from primary cook stove

Reported Exposure to Pollutants: Cooking Fuel

	n=156
Primary Cooking Fuel, n(%)	
LPG or Electricity	134 (86)
Kerosene	17 (11)
Wood	5 (3)
Secondary Cooking Fuel, n(%)	
None	83 (53)
Electricity/LPG	18 (12)
Kerosene	19 (12)
Wood	36 (23)
Composite Cooking Fuel, n(%)	
LPG/Electricity Only	87 (56)
Kerosene (but no wood)	28 (18)
Any Wood	41 (26)

24-hour Time-weighted Average PM_{2.5}

Overall Median Concentration: $182 \,\mu g/m^3$ (IQR: 114 - 318)

Composite Cooking Fuels

Controls vs Cases

```
World Health Organization PM<sub>2.5</sub> 24-hour Guidelines: 25 µg/m³
Interim Target: 75 µg/m³
```


Study Limitations and Strengths

Limitations

- Single measure of household PM_{2.5}
- Ubiquitously high levels of exposure
- Unmeasured confounders

Strengths

- Objective measures for exposure classification: PM_{2.5}
- Contribution of a variety of sources of exposure
- Vulnerable, hard to reach population
- Inclusion of children

Discussion

- Higher concentrations of PM_{2.5} tended to be associated with TB
- Higher magnitude of effect with reported use of kerosene
 - Cooking location
 - Need for additional studies due to contribution to particulate mass measurements
- First study assessing association between TB and objective markers of combustion in home

Importance of Socioeconomic Determinants

- Prevention (37% of estimated new cases undiagnosed/not reported)
- Useful for identifying those at greatest risk
 - Screening strategies
 - Active case-finding
 - Targets for preventive therapy

Study Acknowledgements

Study participants and their families

Johns Hopkins University Jonathan Golub Amita Gupta Patrick Breysse (and lab) Vidya Mave Nikhil Gupte Nishi Suryavanshi

BJMC/SGH, Pune, India

Anju Kagal Sandhya Khadse Aarti Kinikar Tilak Dhamgaye Priyanka Kulkarni Pune Office at BJMC Sunita Patekar Vaishali Kulkarni

Funding

Fogarty Global Health Fellow Training Program Ujala Foundation Gilead Foundation Institute for Global Tobacco Control (JHU)

